MEASURING THE IMPACT OF SCIENCE: BEYOND TRADITIONS. COMPARATIVE ANALYSIS OF MODERN SCIENTOMETRIC TOOLS AND THEIR ROLE IN DETERMINING SCIENTIFIC CONTRIBUTION

Authors

DOI:

https://doi.org/10.62405/osi.2024.01.02

Keywords:

research impact; research assessment; research engagement; scientometrics; Citation analysis; Dimensions; Lens; Scilit; OpenAlex; Semantic Scholar; Statista; Opendatabot

Abstract

Assessing the quality and value of scholarly research can be crucial for individual researchers, academic institutions, and larger entities like networks, nations, regions, or industries. Scientific research typically gets assessed using a combination of quantitative (bibliometric and scientometric) and qualitative (expert) indicators, the latter of which mostly depends on citation analysis. Innovations that supplement traditional scientometric and bibliometric methodologies have surfaced in the last few decades in response to the difficulties presented by open science, especially in the areas of open data, open access, and open peer review. At the same time, there have been notable changes in the technological setting, including the adoption of open citation practices, standards including DOI and ORCID, and advances in artificial intelligence technologies such as scientific knowledge graphs. Modern cloud infrastructures and computational capacity make data more accessible and analysis more efficient if the data (and metadata) is properly prepared. Apart from traditional scientometric databases such as Web of Science and Scopus, the field has come to rely heavily on a number of powerful tools and initiatives including Dimensions, Lens, Scilit, OpenAlex, Crossref, Google Scholar, Semantic Scholar, OpenCitations, ScientoPy. The purpose of this article is to present an overview and comparison of a few different platforms and tools, with a focus on their responsible use for impact research and science evaluation. The study's conclusions state that scientometric indicators should only be used as a supplement to expert evaluation, that they should be treated carefully, and that different services and tools should be employed to guarantee the multidimensionality and dependability of scientometric analysis and its application in assessing researchers and their work as well as forecasting research strategies. We are confident that the National Electronic Scientific Information System (URIS) and the Open Ukrainian Science Citation Index (OUCI) will continue to grow as a result of using the corresponding experience.

 

References

Горовий, В. М. (2015). Критерії якості наукових досліджень у контексті забезпечення національних інтересів. Вісник Національної академії наук України, 6, 74–80.

Мриглод, О., & Назаровець, С. (2019). Наукометрія та управління науковою діяльністю: вкотре про світове та українське. Вісник Національної академії наук України, 9, 81–94. https://doi.org/10.15407/visn2019.09.081

Павлюк, К. В., & Камінська, О. С. (2019). Зарубіжний досвід оцінки якості наукової діяльності. Наукові праці НДФІ, 3, 25-40. https://doi.org/10.33763/npndfi2019.03.025

Пилипенко, Г. М., & Федорова, Н. Є. (2020). Наука як фактор соціально-економічного розвитку суспільства: монографія. Національний технічний університет «Дніпровська політехніка».

Ярошенко Т. О., & Жарінова, А. Г. (2023). Наукове цитування: історичний і теоретичний ландшафт. Наука та наукознавство, 3 (121), 41-67. https://doi.org/10.15407/sofs2023.03.041

Ярошенко, Т., Сербін, О., & Ярошенко, О. (2022). Відкрита наука: роль університетів та бібліотек у сучасних змінах наукової комунікації. Цифрова платформа: інформаційні технології в соціокультурній сфері, 5(2), 277–292. https://doi.org/10.31866/2617-796X.5.2.2022.270132

Ярошенко, Т., & Ярошенко, О. (2020) Високоцитовані документи науковців України в базах даних цитувань: кореляція бібліометричних індикаторів. Український журнал з бібліотекознавства та інформаційних наук, 5, 108-126. https://doi.org/10.31866/2616-7654.5.2020.205734

Arabadzhieva, M., Vutsova, A., & Yalamov, T. (2023). In search of excellent research assessment. Baden-Baden: Nomos. https://doi.org/10.5771/9783748937203

Basson, I., Simard, M.-A., Ouangré, Z. A., Sugimoto, C. R., & Larivière, V. (2022). The effect of data sources on the measurement of open access: A comparison of Dimensions and the Web of Science. PLOS ONE, 17(3), e0265545. https://doi.org/10.1371/journal.pone.0265545

Bornmann, L. (2018). Field classification of publications in Dimensions: A first case study testing its reliability and validity. Scientometrics, 117 (637). https://doi.org/10.1007/s11192-018-2855-y

Bu, Y., Waltman, L., & Huang, Y. (2021). A multidimensional framework for characterizing the citation impact of scientific publications. Quantitative Science Studies, 2(1), 155–183. https://doi.org/10.1162/qss_a_00109

Curry, S., Gadd, E., & Wilsdon, J. (2022). Harnessing the Metric Tide: indicators, infrastructures & priorities for UK responsible research assessment. Report of The Metric Tide Revisited panel, December 2022. https://doi.org/10.6084/m9.figshare.21701624

Dardas, L. A., Sallam, M., Woodward, A., Sweis, N., Sweis, N., & Sawair, F. A. (2023). Evaluating Research Impact Based on Semantic

Scholar Highly Influential Citations, Total Citations, and Altmetric Attention Scores: The Quest for Refined Measures Remains Illusive. Publications, 11(1), 5. https://doi.org/10.3390/publications11010005

Jiao, C., Li, K., & Fang, Z. (2023). How are exclusively data journalsindexed in major scholarly databases? an examination of the web of science, scopus, dimensions, and OpenAlex.. Ithaca: Cornell University Library, arXiv.org. https://doi.org/10.48550/arxiv.2307.09704

Heck, T. (2021). 8.2 Open Science and the Future of Metrics. In R. Ball (Ed.), Handbook Bibliometrics (pp. 507-516). Berlin, Boston: De Gruyter Saur. https://doi.org/10.1515/9783110646610-046

Herzog, C., Hook, D., & Konkiel, S. (2020). Dimensions: Bringing down barriers between scientometricians and data. Quantitative Science Studies, 1(1), 387-395. https://doi.org/10.1162/qss_a_00020

Hook, D. W., Porter, S. J., & Herzog, C. (2018). Dimensions: Building Context for Search and Evaluation. Frontiers in Research Metrics and Analytics, 3. https://doi.org/10.3389/frma.2018.00023

Kinney, R. M. et al. (2023). The Semantic Scholar Open Data Platform. ArXiv, abs/2301.10140.

Kramer, B. (2022). COKI Open metadata report (Update March 25, 2022). https://github.com/Curtin-Open-Knowledge-initiative/open-metadata-report

Orduña-Malea, E., & Delgado-López-Cózar, E. (2018). Dimensions: redescubriendo el ecosistema de la información científica. El Profesional De La Información, 27(2), 420. https://doi.org/10.3145/epi.2018.mar.21

Porter, S. J., & Hook, D. W. (2022). Connecting Scientometrics: Dimensions as a Route to Broadening Context for Analyses. Frontiers in Research Metrics and Analytics, 7. https://doi.org/10.3389/frma.2022.835139

Priem, J., Piwowar, H., & Orr, R. (2022). OpenAlex: A fully-open index of scholarly works, authors, venues, institutions, and concepts.

ArXiv. https://arxiv.org/abs/2205.01833

Ruiz-Rosero, J., Ramirez-Gonzalez, G. & Viveros-Delgado, J. (2019). Software survey: ScientoPy, a scientometric tool for topics trend analysis in scientific publications. Scientometrics, 121, 1165–1188. https://doi.org/10.1007/s11192-019-03213-w

Scheidsteger, T., & Haunschild, R.. (2023). Which of the metadata with relevance for bibliometrics are the same and which are different when switching from Microsoft Academic Graph to OpenAlex?. El Profesional De La Información. https://doi.org/10.3145/epi.2023.mar.09

McShea, Jo (2018). “Dimensions – a Game-Changing product launch from Digital”. Outsell. https://figshare.com/s/68dcc69f3fe6189098bb

Singh, V. K., Singh, P., Karmakar, M., Leta, J., & Mayr, P. (2021). The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis. Scientometrics, 126(6), 5113–5142. https://doi.org/10.1007/s11192-021-03948-5

Singh Chawla, Dalmeet (24 January 2022). Massive open index of scholarly papers launches.Nature. https://doi.org/10.1038/d41586-022-00138-y

Singh, P., Singh, V. K., & Piryani, R. (2023). Scholarly article retrieval from Web of Science, Scopus and Dimensions: A comparative analysis of retrieval quality. Journal of Information Science, 0(0). https://doi.org/10.1177/01655515231191351

Thelwall, M. (2018). Dimensions: A competitor to Scopus and the Web of Science? Journal of Informetrics, 12(2), 430–435. https://doi.org/10.1016/j.joi.2018.03.006

Visser, M., Van Eck, N. J., & Waltman, L. (2021). Large-scale comparison of bibliographic data sources: Scopus, Web of Science, Dimensions, Crossref, and Microsoft Academic. Quantitative Science Studies, 2(1), 20–41. https://doi.org/10.1162/qss_a_00112

Wang, K., Shen, Z., Huang, C., Wu, C.-H., Dong, Y., & Kanakia, A. (2020). Microsoft Academic Graph: When experts are not enough. Quantitative Science Studies, 1(1), 396-413. https://doi.org/10.1162/qss_a_00021

Published

2024-03-25